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The stability and bifurcations associated with the loss of azimuthal symmetry of 
planar flows of a viscous incompressible fluid, such as vortex-source and 
Jeffery-Hamel flows, are studied by employing linear, weakly nonlinear and fully 
nonlinear analyses, and features of new solutions are explained. We address here 
steady self-similar solutions of the Navier-Stokes equations and their stability to 
spatially developing disturbances. By considering bifurcations of a potential vortex- 
source flow, we find secondary solutions. They include asymmetric vortices which are 
generalizations of the classical point vortex to vortical flows with non-axisymmetric 
vorticity distributions. Another class of solutions we report relates to transition 
trajectories that connect new bifurcation-produced solutions with the primary ones. 
Such solutions provide far-field asymptotes for a number of jet-like flows. In 
particular, we consider a flow which is a combination of a jet and a sink, a tripolar 
jet, a jet emerging from a slit in a plane wall, a jet emerging from a plane channel 
and the reattachment phenomenon in the Jeffery-Hamel flow in divergent channels. 
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1. Introduction 
This paper addresses stability and bifurcations of elementary hydrodynamic flows 

such as a point sink, a point source, a point vortex and some of their superpositions 
and generalizations. We limit our study to plane steady motions of a viscous 
incompressible fluid. These topics are clearly of intrinsic fundamental hydrodynamic 
interest, but should also be considered in a much wider context. Such elementary 
solutions may serve locally as idealized models of convergent, divergent and swirling 
motions, which are prevalent in natural and technological flows. One encounters such 
flows as protypical flow modules as well as structural elements in turbulent motions 
(Hussain 1986) and particularly in jet-like flows. 

The main results reported here concern loss of axial symmetry of the above- 
mentioned primary or base flows and generation of angle-dependent flow patterns as 
a result of instability. There is a variety of instability mechanisms in jet-like flows : 
for instance, the well-known free-shear-layer instability (Kelvin-Helmholtz insta- 
bility), axial symmetry breaking due to spiral mode instability (Batchelor & Gill 
1962) and inviscid vortex ring instability (Widnall & Sullivan 1972). I n  general, 
theoretical investigation of even linear stability, let alone nonlinear cases, involves 
numerical calculations and tedious analytical methods. I n  studies of coherent 
structure dynamics in turbulent flows and stability of basic flows, we unavoidably 
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face the question : are the elementary motions themselves subject to instabilities ? 
The principal thrust of this paper is to answer this question. We will also show how 
simple analytical methods can be used to study linear and nonlinear instabilities of 
primary flows and bifurcations, as well as asymptotic features of the resulting 
secondary solutions. 

The potential source flow as well as the well-known Jeffery-Hamel (JH) flow 
belong to a class of (plane) conically similar solutions of the Navier-Stokes 
equations. The conical flows form a very interesting and intriguing class of solutions 
of the Navier-Stokes equations (Goldshtik 1990). They possess such unusual effects 
as collapse of vorticity at finite Reynolds numbers; self-focusing of rotation 
(Goldshtik & Shtern 1990) ; and a variety of instabilities which lead, for instance, to 
self-excitation of swirling and axisymmetric hydromagnetic dynamo. In this paper 
we deal with plane viscous flows only. 

Plane conical solutions of the Navier-Stokes equations were first obtained by 
Jeffery (1915) and Hamel (1916) independently. Following the formulation of the 
problem by Jeffery, Hamel gave a rather detailed analysis of the flow in a divergent 
plane channel and found non-uniqueness of steady solutions and non-existence of 
everywhere-divergent flow regimes a t  large enough Reynolds numbers. The analysis 
of spatial stability of the J H  solutions seems to have begun with Dean (1934). 
Rosenhead (1940) found, in addition to other new results, the existence of an infinite 
number of solutions at  any fixed Reynolds number and angle between the plane 
walls. Fraenkel(l962) showed that as the Reynolds number increases symmetric and 
asymmetric solutions merge at  some critical values. Hooper, Duffy & Moffatt (1982) 
have studied the J H  flow numerically and shown the bifurcation to be subcritical in 
the Reynolds number - pressure coefficient plane. 

Since the works of Fraenkel(l962, 1963), the analysis of the J H  problem has been 
considered as the first step toward the study of the flow in a channel with small wall 
curvature. This flow’s stability has been studied by Georgiou & Eagles (1985, see also 
references therein) with the help of a small-parameter expansion. Detailed analyses 
of bifurcations and stability of the J H  and generalized flows have been carried out 
by Sobey & Drazin (1986) and Banks, Drazin & Zaturska (1988). In the latter work 
the Landau amplitude equation has been used for a weakly nonlinear analysis, and 
one finds very interesting features of spatial stability. Professor Peralta-Fabi, one of 
the authors of the paper by Uribe et al. (1989), has kindly informed us of their results, 
which are rather similar to those of Hooper et al., but which include an interesting 
application of the methods of Hamiltonian mechanics to J H  flow. 

To our surprise, we have failed to find in the available literature any study of the 
vortex-source flow stability and bifurcation. We have, however, found that the 
secondary regimes, appearing as a result of bifurcations, belong to a special class of 
Navier-Stokes equation solutions. The existence of such a class was indeed noted by 
Oseen (1927). Some preliminary results have been reported by Goldshtik & Shtern 
(1989), who found bifurcations of new steady solutions for the source flow. But for 
the vortex-source flow, they used an approximate approach dealing with unsteady 
secondary solutions. Recognizing the limitations of the latter approach, here we use 
the same steady analysis but for the general case of the vortex-source flow and, in 
addition, study linear and nonlinear spatial stability of the primary and secondary 
solutions, find new scaling and asymptotic features of the solutions, and study a 
number of transition trajectories of physical significance. 

In particular, the transition trajectories give us the far field of a jet emerging from 
a slit in a plane wall and of a jet emerging from a plane channel. Solutions of 
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boundary-layer jets,  i .e. jets subject to the boundary-layer approximation (see 
Schlichting 1979 and Loitsyansky 1966 for theoretical treatment), may be applied in 
a region where the distance from the slit is large in comparison with the slit size, but 
momentum flux loss due to a jet-wall interaction is negligible. The momentum flux 
is a unique characteristic of the boundary-layer jet, and the flow rate from the slit 
is neglected. We know that jets have self-similar solutions only when the exit flow 
rate is zero (Batchelor 1967, p. 345). For comparison, we consider here jet-like flows 
with zero flow rate in the far field, without using the boundary-layer approximation. 
We show that, owing to jet-wall interaction, velocity decays faster than in 
boundary-layer jets, and we find two regions with different power relations between 
velocity and radial distance. 

2. Problem formulation 
We address plane motion of a viscous incompressible fluid. It is convenient to use 

the vorticity w and stream-function II. equations in polar coordinates ( r , $ )  (see 
Batchelor 1967), 

A motion driver is assumed to be localized a t  the origin ( r  = 0).  It may be a point 
sink, a point source or a point-vortex source. The problem formulation does not 
include any intrinsic lengthscale. One can see that the appropriate dimensional 
scaling factor is the kinematic viscosity v for stream function, vr-l for velocity and 
ur-2 for vorticity. We choose to introduce new independent variables : [ = In ( r / r o )  
instead of r ,  where ro is an arbitrary lengthscale which is used to make the argument 
dimensionless, and T = i ln  (v t / r2)  instead of time t ; and dependent variables 

Substituting these representations into ( 1 )  we have, 

aa ay aa a2a 

i3T aq5 a+ a$2 
&-2T-+-(D-2)Q--DY = -+(D-2)252, 

In  the simplest case, when in (2), a/aT = a/a[ = 0, i t  follows that = 0 and 

U"' -k 4 u  + 2UU' = 0, (3) 

where the prime denotes differentiation with respect to the azimuthal angle $. After 
integration this equation becomes 

U " + 4 U +  u2 = c, (4) 
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which was first derived by Jeffery (1915) and Hamel (1916) ; this is the J H  flow. The 
integration constant C is related to the Reynolds number 

Re = v - l l  rvr d$ = aUo. 

Here the subscript 0 denotes the average with respect to $. Note that a positive Re 
denotes a source flow and a negative Re denotes a sink flow. As a characteristic of the 
J H  solutions, we will also use the parameter 

r u2 
Ba = --urmaX, 

4v 

where v,,,, is the maximum radial velocity at  a fixed r .  

at $ = 0 and $ = a, the non-slip boundary conditions are 
Let us discuss the boundary conditions. For a divergent channel with plane walls 

U = V = O  a t  $ = 0  and $ = a .  (5) 

In free space, a = 2x and all functions U,  V ,  52 must be 2x-periodic with respect to 
$, but the stream function Y may have an additional linear term. In particular, it 
is evident that equations (2) have the solution 

Y = Yo = U 0 $ - V , [ ;  SZ = 0, (6) 

which corresponds to a potential vortex-source flow. Here Uo is a constant related to 
the dimensionless mean radial velocity Uo = Re/(2n) ,  and V, is the mean 
dimensionless azimuthal velocity, which is proportional to circulation, i.e. 

So far, we have discussed the boundary conditions for the angular coordinate q5. 
Now, with respect to the radial coordinate, we look for solutions (involving U, V ,  52) 
which remain bounded as r + GO ; we require that Y may not have more than the 
logarithmic singularity, in accord with Yo behaviour, which is linear in 6 = In ( r / ro ) .  

To seek new solutions differing from the classical ones, we shall use here methods 
of hydrodynamic stability and bifurcation theory (Yudovich 1965 ; Joseph 1976). 
Bifurcation of the asymmetric J H  solutions and merging of symmetric ones were 
found before a detailed analysis of their stability was made. We think that this 
precedence was due to the relative simplicity of the bifurcation study of the J H  
problem, which may be solved using simple analytical methods. Furthermore, the 
bifurcation analysis is even simpler in the case of free space than in the case of a 
diverging channel. In  contrast to the bifurcation study, the stability analysis, even 
a linear one, is rather complex in such non-parallel flows and requires careful 
formulation and interpretation. We prefer to start with simple topics and proceed to 
more complex and sophisticated cases. This is why we begin with the bifurcation 
analysis. 

3. Bifurcations of primary flows 
3.1. Counting and patterns of the J H  solutions 

Many features of the solutions of the J H  flow are known through the earlier works 
mentioned in the Introduction. Here we review some of them for clarity in 
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Ba 

FIGURE 1. Bifurcation diagram for a divergent channel flow with a = 10". Re, Bn relate to the mean 
and maximum velocities: WL denotes the maximum number of outflow regions for each group of 
solutions. Solutions I 0  and OZ are single-dashed lines because both have one positive eigenvalue, 
and part of curve I01 is double dashed because corresponding solutions have two positive 
eigenvalues. As Re increases, asymmetric solutions I 0  and OZ merge and disappear at B,, and 
symmetric solutions ZOI (single-dashed and dou ble-dashed) merge and disappear at M,. 

presentation of our new results. The J H  problem has a countable infinite set of 
solutions. This 'count ' depends upon the choice of a velocity scale. Prior papers have 
used both the flow rate and the maximum velocity (these two correspond to 
dimensionless numbers denoted by Re and Ba here). We shall try to answer 
Batchelor's question (1967, p. 301) on how the number of solutions increases with the 
maximum velocity. Another reason to re-examine the JH flow is to emphasize 
similarity properties of the asymmetric JH solutions, and the similarity of bifurcation 
values at small angles and high Reynolds numbers. 

We shall discuss the J H  solution features using a parameter plane (Re,Bu). The 
use of both these parameters allows us to compare our calculations with others'. An 
additional parameter is the angle 01 between the walls in the JH flow. Of course, only 
two of the parameters Re,Ba, a are independent; when any two are fixed the third, 
as well as the problem solution, can be determined. It is known (Batchelor 1967) that  
a t  small a, the solutions are determined not by 01 and Re separately but by the 
product ccRe (or Bu) only. We have re-examined some of the JH solutions 
numerically. Calculations results for 01 = 10" are shown in figure 1. (This angle has 
been chosen here to compare our numerical calculations with the results of Millsaps 
& Pohlhausen 1953). Here we use the notation 0 (outflow) and 1 (inflow), and their 
combination allows a compact characterization of the flow pattern (figure 2). We find 
this notation particularly convenient, and it does not contradict the mathematical 
classifications (based on features of the elliptic functions) used by Rosenhead and 
Fraenkel. Patterns I 0  and 0 I  relate to the full period of the elliptic function, in terms 
of which all solutions of (4) may be expressed (Hamel 1916). I and 0 have to 
alternate: for example, 010 means that, beginning from the lower wall as we move 
counterclockwise, there are regions of outflow, inflow and outflow successively. It is 
also convenient to introduce an integer parameter m, which equals the number of full 
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4 OI 

I0 IOI 

FIGURE 2. Flow pattern of solutions with m = 1 in figure 1 .  The ‘critical’ distribution which 
divides the 0 and ZOI solutions is also shown. 

periods of the elliptic function in a distribution of U($) ,  0 < q5 <a, for the 
asymmetric solutions. Symmetric solutions, connected to these asymmetric solutions 
by a bifurcation point, are marked by the same value of m. 

Branch I in figure 1 corresponds to a pure convergent flow between two inclined 
planes. As Re + - 00, the distribution of the radial velocity becomes nearly constant 
with $, with the boundary layers along the walls becoming thinner. Branch 0 
corresponds to pure divergent flow. As one moves along the branch 0 from the origin 
(in the figure), the wall shear stress first increases and then decreases to 0 at  B,. As 
Re increases, the regime 0 transforms into the regime I01 at  B,. At the same point 
a subcritical bifurcation of two asymmetric solutions IO,  OI takes place. Both of 
these regimes correspond to the same dashed curve in figure 1 because they have 
equal mean and maximum velocities, and one is the reflection of the other with 
respect to the half-angle plane. In figure 1, B, and M, can be interpreted the same 
way as B, and M,; T, will be explained in 53.1.2. 

These features are in qualitative agreement with the results of Fraenkel (1962), 
Hooper et al. (1982), and Sobey &, Drazin (1986). The coordinates of B, were found 
to agree with the asymptotic values, uRe, = 18.8 (Landau &, Lifshitz 1986, p. 80) and 
Ba, = 10.31 (Batchelor 1967, p. 299) for a’ + 1 (subscript * in this paper denotes the 
critical bifurcation value). As a+O, the divergent channel transforms to a plane 
channel. Because Re, = 18.8/a + 00, such a bifurcation (and instability) is absent in 
plane Poiseuille flow. But the well-known convective instability occurs in Poiseuille 
flow, which is more dangerous than the steady instability at very small a (Georgiou 
&, Eagles 1985), because convective instability happens at  the finite Reynolds 
number Re, = 7696 based on the gap size as a lengthscale (see, for instance, 
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Goldshtik & Shtern 1977). The convective instability becomes more dangerous at 
a < 18.8/7696 = 0.7". Results of calculations for a = 10' are in good agreement with 
the asymptotic limit a < 1 (e.g. aRe, = 18.8). Therefore, there is a rather wide range 
of the channel angle for which scaling can be used. 

3.1.1. Scaling 
Let us consider an asymmetric solution corresponding to one period of the elliptic 

function (see OI or IO, figure 2) for the parameter values, say, a, and Re,. By joining 
m such channels and removing intermediate walls we obtain a flow for a, = moll 

and Re, = &el, corresponding to m periods of the elliptic function. It follows that 
a, Re, = m2 a, Re,. Now we use the result that solutions depend on the product a R e  
only a t  small a. 

In this asymptotic limit there are scaling relations among solutions (IO),, where 
m = 1,2,  . . . and the index means that I 0  is repeated m times. One may produce curve 
(10), from curve I 0  with the help of the mapping, P(m) = m2P(1), where P(1) is a 
point on the curve I 0  (figure 1) and P(m) is the mapped point on the curve (IO),. In 
particular, the same relation is valid for points B,, B,, ..., and for the parameters 
corresponding to the bifurcations of the asymmetric regimes; that is 

m = 1,2,  ... . Re,(m) = m2Re , ( l ) ;  Ba,(m) = m2Ba(l);  

Note that in figure 1, such mapping corresponds to rays passing through the origin 
so that P(1) and P(2) on any rays are related as P(2) = 4P(1). In particular, the 
distance of B, from the origin is 4 times that of B,. Such a scaling is absent for 
symmetric solutions because they do not consist of an integer number of periods of 
the elliptic function. Note that even orientations of curves 010 and 0 in figure 1 are 
different. 

3.1.2 Counting 
An infinite set of solutions exists at each Re, but as Re increases the asymmetric 

solution pairs disappear at points B, due to the subcritical pitchfork bifurcations. 
The symmetric solution pairs I (OI) ,  merge and disappear at points M, due to the 
subcritical tangent bifurcations. See also Frankel (1962) and Hooper et al. (1982). 

The solution set is divided into separated groups, corresponding to different m (see 
figure 1). Each group consists of four solution branches, which have different flow 
patterns, but converge at points B,. Any solution of such a group includes m regions 
of outflow (except the solution I for m = 1). For example, the group for m = 2 
consists of solutions 010, IOIO, OIOI, IOIOI, and any solution has two 0 only. 

But if, instead of Re, one uses Ba as the independent parameter, as Hamel and 
Batchelor did, then bifurcation features are different. Pitchfork bifurcations at  B, 
become supercritical; M, are not bifurcation points now, but T,,, (for m = 2,3 ,  ..., ) 
are the points where supercritical tangent bifurcations take place. Point % is shown 
in figure 1. 

Batchelor (1967, p. 301) has noted, 'the number of possible distributions increase 
with aR, although not in a way which can be specified simply'. Batchelor's aR 
corresponds to Ba in our paper and we provide our answer to his remark. The number 
of the solutions N equals the number of intersection points of a vertical line Ba = const 
with the curves in fisure 1 .  At Ba < Ba,( 1 )  there is the unique solution, first I (at 
Ba < 0) and then 0. Upon passing B,, solution 0 transforms into IOI and two new 
solutions I 0  and OI appear. The number of solutions, then, increases to 3. At point 
%, owing to supercritical tangent bifurcation, two solutions having pattern 010 are 
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0 I 2 3 4 

[Ba lBd l ) l '  

FIQURE 3. Dependence of the JH solution number N on Ba. B, and 'I?,,, are points of pitchfork and 
tangent bifurcations respectively. The number of solutions after the corresponding bifurcations are 
indicated in the figure. 

added, and N now becomes 5, and so on. At each B, and at each x, two additional 
solutions appear, so that N(Ba) is the step function shown in figure 3. For all N 2 1 this 
step function is bounded by straight line M, which is described by the relation 

N = 4[Ba/Ba,( 1)$- 1 .  

As a result of the scaling, i.e. the relation Ba,(m) = m2Ba,(l), it follows that as Ba 
increases past Ba,(m), N becomes (4m- 1)  for m = 1,2,  ... . This count N remains 
valid asymptotically for Ba 9 1 even when a is not very small because the value of 
angle a is bounded: a < 2 ~ .  However, Ba may become arbitrarily large, so that 
asymptotically Ba 9 a2 and the relations for points Ba,(m) remain valid. As a 
increases, the curves in figure 1 preserve their arrangement qualitatively but move 
to the left and down (compare figures 1,21 and 23). At a = K ,  point B, coincides with 
the origin (figure 21), and a t  a = 2~ point B, reaches the origin (figure 23) (Fraenkel 
1962). Both of the cases will be considered in the following to model some jet-like 
flows. A t  a = 27c, solutions corresponding to points Ba,(m) may be considered as free- 
space flows, because in these critical situations both velocity and shear stress have 
zero values a t  the walls (similar to the 'critical' case in figure 2). This is why the walls 
may be removed. But for the free-space problem, these points are not bifurcation 
points. 

Thus the bifurcation analysis together with the scaling feature allows us to count 
the number of solutions. 

3.2. Bifurcations in the vortex-source j b w  

3.2.1. Equations for disturbances 
In the free-space problem one may find bifurcations of new solutions analytically. 

Bifurcation of steady solutions from a pure radial flow in free space has been 
considered by Goldshtik & Shtern (1989) together with some approximate analysis 
of unsteady solutions in the vortex-source problem. Here we shall show that steady 
solutions appear owing to bifurcation in the general case of the potential vortex- 
source flow. The stream function for this solution is !Po = Uo#-V,c  with the 
vorticity SZ = 0 outside the origin. We seek bifurcation of a new steady solution, so 
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that a/aT = 0 and 51 = Q, (#,(), Y = Yo+ $l (4, t). Then we obtain from (2) the 
following system : 

3.2.2. Linear analysis 
The necessary condition for bifurcation is the existence of a non-trivial solution of 

the linearized equation. Therefore, we first linearize this system, neglecting the 
nonlinear terms in (7a ) .  Because all coefficients of the linearized system are constant, 
solutions may be sought in the normal form : Q, = exp [im (#-,!?(I. Then from (7a ) ,  
which becomes decoupled from (7 b ) ,  we obtain the dispersion relation 

(l+/32)m~+im[Vo-,4(Uo+4)]-2Uo-4 = 0. (8) 

(9) 

m2 V ;  = (Uo+4)2[2Uo+4-m2]. (10) 

It follows that P = &/( UO + 4) ; 

Expression (10) gives the relation between the radial and azimuthal velocities U, 
and V,, and this is the necessary condition for bifurcation. These 'neutral' curves are 
shown in figure 4, where V, = 0 is a symmetry axis. The bifurcational values of U,, 
V,, satisfying (10) will be denoted by Uo*, Vo*. 

3.2.3 Nonlinear analysis 
The neutral modes of the linear theory depend on q5 and [, but through a single 

argument x = #-PE. Using an expansion method with a small parameter of 
amplitude c = A or the U, displacement c2 = Uo*- U,, one can easily find that 
nonlinear neutral disturbances also depend only on x. Therefore we seek solutions in 
the following form: 

!iJ = uo + - v, 6 + (1 + P 2 )  $(# -BE). (11) 

The existence of such a class of Navier-Stokes equation solutions had been pointed 
out by Oseen (1927). Our new observation is that solutions of this class bifurcate 
from the potential vortex source ; we also discuss features of some such solutions and 
their interpretation. Substitution of (1 1) into (2) yields the following ordinary 
differential equation for @(x) : 

p v  + ;$'" + py = - 2$'$" ; 

where 

and the prime denotes differentiation with respect to x. 
Using $' = u and integrating, one gets 

u"+;u'+pu = c-u2. (12) 
For physical reasons, solution u(x) must be a periodic function of x with period 2x. 

Multiplying (12) by u' and integrating in the interval 0 < x < 27c we obtain 

$1; (u') 2dX = 0. 
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We look for a non-trivial solution, which requires that 1; = 0. Then, p = &/(Uo+4); 
this coincides with (9), but is valid in a general nonlinear case. Thus in (11) the 
parameter /3 is a function of U, and V,. In  the nonlinear case also, U, and V, are radial 
and azimuthal velocities averaged over angle q5. Then the averaged value of u has to 
be zero, i.e. 

u d x  = 0 ;  C = Jru’dx 2 0. 1: 
The latter relation follows from the integration of the equation 

u ” + p  = c-u’. (13) 

If one chooses the position of a local maximum of a periodic function u(x) as the 
origin in the x-axis, then solutions of (13) would satisfy the initial conditions 

~ ( 0 )  = A ;  ~ ’ ( 0 )  = 0. (14) 

Here A ,  being the maximum value of u(x), is considered to  be a new parameter. All 
solutions of this initial-value problem for any tentative A ,  ,u and C are symmetric 
with respect to the positions of their extrema. That is why it is sufficient to satisfy 
u’(2x) = 0 with u”(2x) < 0; the second condition of periodicity, u(2n) = A ,  would be 
satisfied automatically. Thus we have the two conditions : 

u’(2x) = 0, l u d X  = 0;  (15) 

which must be satisfied by a selection of the parameters A ,  ,u and C. It is convenient 
to consider the amplitude A as a free parameter and to find ,u and C by the method 
of shooting to satisfy conditions (15). To reiterate, we started with the problem 
having two free parameters U,,, V, and have reduced it to the problem (13)-( 15) with 
only one free parameter A .  

For the case m = 1,  we can find this one-parameter set of solutions {u, (x,A,), 
,ul (Al), C, (A , ) }  in the whole interval 0 ,< A ,  < co, then solutions €or an arbitrary m 
can be obtained by the scaling transformations : 

A ,  = m’A,; ,urn = m2,uu,; C, = m4C,; u,(x) = rn2ul(mX). 

3.2.4. Small-amplitude expansion 

of bifurcation takes place, we use the expansions 
For A = 0, the solution of (13)-( 15) is trivial (i.e. u = 0, C = 0). To study what kind 

u = Au1+A2u,+A3u3+ ... ; C = A2C,+A3C3+ ... ; p = po+Apl+A2p,+ ... . 

It follows from (13) that u ~ + p o u l  = 0, and (14) and (15) yield 

,uo = m2 ; u, = cos (mx). 

At the second order of A ,  we have from (13), 

u ~ + m 2 u ,  = C , - ~ o s ~ ( m ~ ) - , u , ~ ~ ~ ( m ~ ) .  

The right-hand side must be orthogonal to  cos (mx) ; consequently, ,ul = 0. From the 
second condition (15) we obtain C, = t and 

u;+m2u, = -;cos(2m~). 
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FIGURE 4. Curves of bifurcations in the vortex-source flow. U, and V, are proportional to the 
flow rate and circulation, m is the number of angular oscillations in the velocity distribution. 

Because of (14), the solution of the above equation is 

u2 = [cos (2m~) -cos  (mx) ] / (6m2) .  

At the third order, we have 

ug+m2u, = -2u,u2-p2u,+C, 

cos ( 2 m ~ )  - 1 - cos ( m ~ )  - cos ( 3 m ~ )  
6m2 

-p2 cos (mX) + C,. - - 

The orthogonality condition and (15) give 

p2 = - 1/6m2; C, = l /6m2.  

Therefore, p decreases with increasing A near the bifurcation point. Then we use the 
relations 

to calculate derivative ap/aU,, a t  fixed V,, i.e. 

It follows from ( l o ) ,  as one can also see in figure 4, that U,, 2 -%. Therefore, 
(ap/aU,) ,  > 0 ,  where the asterisk denotes the derivative a t  the ‘neutral’ curves. 
Then a t  A = 0 ,  because of 

we find that U, decreases with increasing A ;  i.e. the bifurcation is subcritical with 
respect to U, a t  any fixed V, and m. I n  particular, for V, = 0, 

This particular case has been studied by Goldshtik & Shtern (1989). It is helpful 
for the following discussion to reproduce the results of their calculation, shown in 
figure 5.  There AU = Urn,,- Umin corresponds to the maximum variation of the 
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FIQURE 5. Bifurcation diagram for the source flow. AU is angular variation of radial velocity. 

TI and T3 are examples of transition trajectories. 

radial velocity as a function of the angle. Near the bifurcation points, which 
correspond to U,, = 3 m 2 - 4 )  (or Re, = n(m2-4) ) ,  we find that AU = 2A+O(A2) ,  
and according to  (17a),  all the curves in figure 5 are normal to the abscissa at the 
bifurcation points. To summarize, a t  any value of the Reynolds number, a countable 
set of the angular-dependent solutions exists. This feature is common to free-space 
and divergent-channel problems. The origin in the plane (U,, V,) is a bifurcation point 
and in its vicinity two solutions of arbitrarily small norm coexist : one is uniform and 
the other is angular dependent. 

3.2.5. Qualitative and asymptotic analyses 

Equation (13), with the help of the transformations 

(17b) 
u = ay(B)+u,, u1 = t [ ( , u 2 + 4 ~ ) t - p ] ,  1 
8 = yx, y = (p+2u1)J, a = b2; J 

may be reduced to the canonical equation for a conservative oscillator with quadratic 
nonlinearity : 

y”+y++J2 = 0. (18) 

The first integral of this equation is y’2 = E - y 2 - b 3  where E is an integration 
constant related to the energy of the oscillator. The phase diagram is shown in figure 
6. The trivial solution (for a potential vortex-source) corresponds to the nonlinear 
oscillator a t  rest, i.e. E = 0, y = y’ = 0, which is the origin in figure 6. The angle- 
dependent solutions correspond to the closed orbits filling the region inside the loop 
of the separatrix which is shown by the thick line (figure 6), 

ys = 3sech2(aO)-2; E = $. (19) 

One turn along an orbit in figure 6 corresponds to  a periodic solution of (13) with 
azimuthal number m = 1. For an arbitrary m, one must go around m times. In  terms 
of the phase diagram each bifurcation means that a small circle appears near the 
origin. Its scale grows with increasing amplitude and tends asymptotically toward 
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I - - L  
FIQURE 6. Phase plane of the canonical equation (18). Separatrix is shown by a thick line. 

FIGURE 7. Radial outflow and inflow velocity distributions at r = r,, for the secondary flow with 
m = 6. 

the separatrix. The distribution y(B)  changes from harmonic to a nearly constant 
distribution with a spike in each period and tends to the form (19) as the amplitude 

Let V, be bounded and Uo+ - 00. Then from (16) it follows that p + O ,  and y+ 
2V0 +4. Because u(x)  is nearly constant with zero mean value, C + 0. Further, a t  the 
largest order, u1 = - 2U0 ; a = - U,  ; y = ( - 2U0)t. It follows from (1 1) that the radial 
velocity U = a$l/a@ = U, + u = U, +ay +u,. As U, + - oc), y+ ys and from (19), max 
(y,) = 1; and min (ys) = -2. Therefore, asymptotically, min ( U )  = U,; and max 
(U) = -2U,. I n  other words, the maximum outflow velocity equals twice the 
maximum inflow velocity. 

Let us estimate the width of the outflow region. At its boundary, U = 0, this 
asymptotically corresponds to ys = -1. Then the width is 4z,lU,I-T, where z* = 
arccosh 4 3 .  An example of the radial velocity distribution with m = 6 is shown in 
figure 7 .  The JH solutions can also be interpreted with the help of the phase diagram 
in figure 6. Equation (4) is reduced to (18) by the transformations in (17b)  using a 
value of y = 4, where u is replaced by U (compare (4) and (13)). The zero value of U 
corresponds to yo = - 1 +2(C+4)-+. Intersections of the vertical line y = yo with an 
orbit (which depends on the value of C) in figure 6 gives points corresponding to walls 
of the channel. The everywhere-divergent solution 0 relates to  a part of a closed orbit 

u(O)+ 00. 
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FIGURE 8. Bifurcation diagram for the asymmetric vortices. U,,, is the maximum value of 
radial velocity a t  fixed r .  

on the right of y = y o ,  and everywhere-divergent orbit I relates to the left part of the 
same orbit. Solution I0 relates to the full orbit that starts in the lower intersection 
point, and 01 is the same but starts in the upper point. Other solutions relate to the 
same orbit with more than one turn. Bifurcation points B ,  (figure 1) correspond to 
the situation when the left side of the orbit touches the line y = yo .  

Thus, we see that due to the bifurcations, a countable infinite set of the secondary 
solutions are generated and flow patterns develop with thin outflow branches 
separated by wider inflow regions. 

3.3. Asymmetric vortices 

Now we consider the special class of the secondary steady solutions when the flow 
rate is zero (i.e. Uo = 0). Such solutions are generalizations of the potential vortex 
flow and include not only the vortex singularity in the origin but also a vortex 
‘atmosphere ’ (i.e. distributed vorticity) in which vorticity depends on the radius and 
the angle. We hope that these solutions, besides being of intrinsic interest, would 
serve as the simplest models of elementary events of vorticity dynamics in real flows. 

In the case Uo = 0 the dispersion relations (9) and (10) are reduced to 

/? = iv,; m2Vi = 16 (4-m’).  

From the second formula above, it follows that only two bifurcations are 
permitted for the potential vortex relating to azimuthal numbers m = 1 and m = 2. 
Since all results are symmetric with respect to the sign of V,, it is sufficient to consider 
V, 2 0 only. To study the nature of bifurcation (subcritical or supercritical) that 
takes place, one may use the results of the preceding section with the relation V i  = 

64 /p  - 16 which follows from (16) for Uo = 0. Then, form = 1, we obtain, (noting that 
,u = ,uo+Apl+A2,u2+ ... = m2-A2/ (6m2)+O(A4) )  

v, = v , , ( 1 + @ 2 ) + 0 ( ~ 4 ) ,  v,, = qa; 
and for m = 2, 

These bifurcations are shown in figure 8 where Urn, = ( 1  + p”) A (from (1 1) using 
u,,, = A )  corresponds to the maximum of the radial velocity at a fixed distance T .  

As V, increases, supercritical bifurcations occur for modes m = 1,2. Bifurcation for 

V,, = 0;  V, = A/2 /6+O(A3) .  
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FIGURE 9(a-f). For caption see facing page. 

m = 2 is degenerate owing to the symmetry of the transformation V, + - V,. Besides, 
there is a countable set of curves m = 3, 4, ... (only the curve for m = 3 is shown in 
figure 8) corresponding to the solutions which are separated from the potential 
vortex (corresponding to the abscissa in figure 8) but they all bifurcate from some 
potential vortex-source flow a t  some non-zero value of U,. 
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FIQURE 9. Spiral pattern development with the circulation increase for m = I .  Streamlines: (a) 
curve 1 ,  A = 0 (base flow); curve 2, A = I ,  V, = 7.56; ( b )  A = 2. V, = 9.5; (e) A = 2.5, V, = 11.5; 
( d )  A = 3, V, = 15.4. Isovorticity lines: (e) and (f) correspond to the same parameters as curve 2 in 
(a) and case ( d )  respectively. (9) An enlarged version of ( d )  including explanations of Ar,,,,, Arin; 
A$,,,, and A$,” corresponding to r = r,;  the dashed lines are lines of zero radial velocity. 

Flow patterns for the asymmetric viscous vortices with m = 1 are shown in figure 
9. To understand the flow patterns, it is sufficient to observe one streamline, say, 
Y = 0, because other streamlines are similar. Indeed, from (11) it follows that if 
r = r, (4) is the streamline Y = 0, then other streamlines are related to it by the 
transformations r * r, exp ( -  Y/V,), q b  $-+Y/4; these represent uniform scaling 
and turning (figure 1Oc). 

Curve 1 in figure 9 (a ) ,  which is a circle, is a streamline of the undisturbed potential 
vortex, but curve 2 corresponds to the secondary solution. As the amplitude A (and 
hence V,) increases, the streamline becomes curved, folded, longer and thinner : 
compare figure 9 (a  with b 4  ). Note that figure 9 ( e )  and curve 2 in figure 9 (a )  are for 
the same flow, as is also the case in figure 9 (d and f ) ; the creation of the negative- 
signed vorticity is interesting but obvious. Isovorticity contours are shown in figures 
9 ( e , f ) .  It follows from (11) that SZ = (1 +/32)2$”(x). 

According to the definition w = Qv/r2 ,  we have 

For IAl < 1 the isovorticity lines are described by the relation ( r / ro )2  - A sin (2). 
The region inside a contour of positive vorticity is shaded. Flow direction between 
the region is shown by arrows. Regions of positive and negative vorticity are 
separated by the logarithmic spiral lines x = x*, where x* values are such that 
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FIQURE 10. Streamlines and isovorticity lines for m = 2. Streamlines : (a) A = 0.1, V, = 0.041 ; ( b )  
A = 5,K = 1.89; (c) A = 13.5, V, = 11.5 (dashed curves in (c) denote streamlines for one non-zero 
value of the stream function). Isovorticity lines: ( d )  A = 0.5, V, = 0.2; ( e )  A = 12, V, = 6.88. 

$"(x*) = 0. Note that the vorticity field has a delta-function distribution at the origin. 
Such a singularity can be thought of as being supported by the rotation of a needle a t  
the origin. If the needle is removed, then the flow becomes unsteady (diffusive), 
depending on v t / r2 .  The first effect of diffusion would be a smoothing of the delta- 
distribution to the Gaussian distribution. This leads to the appearance of a core of 
positive vorticity peaked a t  the origin and extending outward by a rather thin spiral 
branch. 

Some results for m = 2 are shown in figure 10. I n  the limit A = 0, (using (11)) the 
streamline $ = 0 is given by the relation, 

This pattern is close to the curve in figure lO(a). As A increases, the streamline 
becomes more like a spiral, as seen in figure 10(b,  c ) .  The isovorticity contours are 
shown in figures 10 ( d ,  e ) .  Replacing the delta-function with the Gaussian 
distribution, we obtain a quasi-steady picture of the merging of two vortical patches 
- a typical event in shear layers and jet-like flows. 

Streamlines for the solution family with m = 3 are shown in figure 11.  This family 
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FIQURE 1 1 .  Streamlines of the asymmetric vortices with m = 3:  (a) A = 22.5, V, = 0.62; ( b )  A = 
31.5, V, = 10.2. 

does not bifurcate from the potential vortex (figure 8). At V, = 0 there is a pure radial 
flow with zero total flow rate. This case corresponds to the intersection point of the 
curve for m = 3 and line in figure 5.  This flow consists of three sectors of outflow 
(‘jets ’) and three sectors of inflow. For V, 4 0 all streamlines become closed and each 
of them is placed inside a ring rmin < r < rmax. In particular, for the streamline Y = 0, 

rrnaxlrmin = ~ X P  “1 + P2)(+max - @,in)/ V,l. 
For Vo + 0, the value of (+,,, - has a finite non-zero limit corresponding to 

pure radial flow, and rmax/rmin tends to infinity. Therefore, streamlines in figure 11 
do not touch the origin but come very close to it. Isovorticity lines are not shown 
because they are similar to those in figure 10, but consist of three branches. The 
existence of regions of negative vorticity is explained by the jet-like character of the 
flow ; this feature is the main difference between the viscous flows we discuss here and 
the vortex patch structures in ideal fluid reviewed by Aref (1983). 

Because /I = 64/(Vi+16) we have p+O when V0+m. At /I = 0 and m = 1, the 
problem (13)-(15) has the solution A ,  = 3.649 and C, = 3.333. The corresponding 
distribution u(x) is shown in figure 12, with u,,, = A,, urnin = - 1.716 and xo = 1.2 
such that u(xo) = 0. At a fixed r ,  the width of the outflow region and the width 
A&, of the inflow region are related by the so-called Golden Mean: 

A#out/Aq5in = &/5-1) z 0.62. 

The width of the outflow region measured in the radial direction is ATout = 2xor/p. 
Because 

v =  V,+(l+P”)u, p=aV,, u= (1+/32)u, 

the amplitude of the oscillating part of V is significantly larger than the uniform part 
of V for V, % 1, the radial velocity is small compared to the azimuthal velocity and 
the streamlines diverge very weakly. Let v + ~  be a dimensional value of the uniform 
part V, of the aximuthal velocity. Using V, = v+,r/u we have, 

Arout = 8x0 v/v+o. 

18 FLM 232 
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FIGURE 12. (a) Asymptotic (as V(+ co) form of velocity distribution in the asymmetric vortices. 
(b ,  c )  Radial variation of the azimuthal velocity; V, is higher in ( c )  than in ( b ) .  Note amplitude and 
frequency variation with 6,  as well as with T .  Non-oscillating part ( vV , / r )  and oscillating part are 
denoted by thick and thin lines respectively. 
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If v#, is fixed and v + 0,  then ATout --f 0. But at  fixed v, ATout increases in proportion 
to the distance r .  The oscillating dimensional velocity tends to infinity as v -+ 0 : 

3 = Aqx); r2v2 
v#o 64v2 v#o 16v 

2), = !!!teu(x). 

Thus, in the limit of v+O, we obtain a superposition of a potential vortex of 
bounded circulation and a velocity field oscillating in space with infinitely large 
amplitude and having infinitely small wavelength in the radial direction (schemat- 
ically shown in figure 12 b, c ) .  

To summarize, in this section non-axisymmetric steady solutions of the 
Navier-Stokes equation were found which bifurcate from the potential vortex-source 
flow. To obtain these solutions, we used the methods of bifurcation theory, but did 
not need to employ any stability analysis. We suggest that such solutions may be 
useful irrespective of whether they are stable or unstable. There are many examples 
of dynamical systems spending a rather long time near saddle points. One such gives 
the phase diagram shown in figure 6 where a marked point would ‘ move ’ slowly near 
the saddle point y = -2 ,  y’ = 0 and faster far away from this point. If transitions 
between saddles are quick and passages near these trajectories are long, then the 
saddle trajectories may be viewed as ‘coherent structures’ in a chaotic motion. 

However, it is very important to know the stability features of the solutions and 
values of the growth rate. Bifurcation is intimately related to stability, and as a rule, 
bifurcation occurs with a change in the stability features of an initial solution. This 
brings us to the stability study discussed in the next section. 

I 

4. Stability of the solutions 
4.1. The approach 

The stability features of the solutions which we have obtained and considered above 
and, in particular, of the potential vortex source, are rather surprising. Therefore, the 
problem deserves a careful analysis as well as simple and clear formulation. We look 
for a perturbed solution of the form 

where P, 52, correspond to a base solution whose stability we wish to study. In the 
case of the vortex source, Y = Yo, sZo G SZ, = 0. 

In general, the disturbances ~l and 52, may also depend on T. One can see that if 
equations ( I )  are linearized with respect to the disturbances, they permit solutions 
proportional to exp (A t )  ; but coefficients of the linearized equations depend on r and 
$, so that it is necessary to solve a two-dimensional problem (for eigenvalues and 
eigenfunctions). 

In special cases, the problem may be simplified using the multi-scale approach and 
expansion with respect to a small parameter. Such a parameter may be a scale ratio 
of disturbance wavelength and a distance at which the base flow changes 
significantly. This has been done for the J H  flow by Giorgiou & Eagles (1985, see also 
references therein). But in the case where the angle between the walls is not small or 
in the free-space problem, we do not know in advance if scales of a base flow differ 
enough from scales of amplifying disturbances to justify the use of the multi-scale 
approach. This is one reason why we prefer to avoid such an expansion approach 
here. 

In Goldshtik & Shtern (1989), sclf-similar time-dependent disturbances were 
studied which permit, in the two limiting cascs T + - co and T + co , a decomposition 

Y = P = $l (9, 5); 52 = QO+Q, ($, 5); (20) 

18-2 
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in terms of the normal modes. We are not satisfied with these results because the 
assumptions used are questionable and their interpretations present some difficulties. 
In this paper we prefer to use mainly a spatial stability approach. For the J H  flow 
such an approach has been widely followed beginning with Dean (1934) and 
continuing to the present (Banks et al. 1988). Here we study the spatial stability of 
the vortex-source flow and the secondary solutions, as well as new stability features 
of the J H  flow, regarding the appearance of complex-conjugate pairs of eigenvalues. 

Substituting ( 2 0 )  in ( 2 )  we obtain, for a/aT = 0 ,  the equations for disturbances 

I 

which differ from (7)  only by the substitutions uO+ U, and V o +  V,. In  this section 
we study infinitesimal disturbances so that the nonlinear terms in (21) are neglected. 
We consider the cases when coefficients of the linearized equations ( 2 1 )  depend only 
on 4 and not on f ; .  Therefore, we seek solutions in the normal form 

$1 = @(4)exp ( A t )  ; Ql = a#) exp (43. 
The problem is then reduced to 

c+ Vc+(k2-kU)<+2U'@'+AU"@ = 0 ;  @ " + A 2 @  = c, k = A - 2 ,  ( 2 2 ~ ,  b )  

where the superscript ' 0 '  for U and V is omitted. 
The eigenvalues A can be found from the requirement that a non-trivial solution 

of ( 2 2 )  exists and satisfies the periodicity conditions (for the free-space case) or the 
non-slip conditions (for the channel case). 

Now we shall discuss the behaviour of small disturbances near the origin and a t  
infinity. Because exp(Af;) = ( r / r o ) A ,  one can see that if A,, the real part of A, is 
negative, then such a disturbance has a stronger singularity a t  the origin than the 
base solution. Therefore, there is a question as to whether the linear analysis is 
applicable in the near-origin region. To avoid this difficulty we assume that the 
disturbed velocity field, say the ~1 and Ql distributions, is given at  some fixed 
distance r = r,, and see how the disturbances develop with increasing r .  In the case 
A, < 0 the disturbance decays faster than the base flow. We may interpret this as the 
spatial stability of the base flow with respect to such a disturbance. 

If A, > 0 ,  the base flow is expected to be unstable, but there is another difficulty. 
It is known that for the JH problem, even a t  Re = 0 a countable set of eigenvalues 
A exists with A, > 0 (see Banks et al. 1988 and references therein). It will be shown 
that the same is true for the free-space problem. In particular, there are modes for 
which A, increases and tends to infinity when the scale of the disturbance decreases 
to zero. On the physical grounds that small scales have large dissipation and must 
decay, such eigenvalues and modes must be considered irrelevant. These difficulties 
are brought about by our attempt to solve the initial-value problem for disturbances 
instead of solving a boundary-value problem for the elliptic equations with boundary 
conditions a t  infinity (Banks et aZ.). The selection of relevant modes is a rather 
sophisticated problem in general (for spatial disturbances of the plane Poiseuille flow 
see discussions by Goldshtik & Shtern 1977, p. 133). We shall use a method of 
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selection that involves a continuation of parameter values. First, we consider a 
rather simple flow, which is clearly stable for physical reasons, and identify the 
relevant and irrelevant modes. We then study dependence of eigenvalues for the 
relevant modes on parameter values. That is, instability occurs if A, becomes positive 
for one of the relevant modes. Such an approach is the simplest, as is obvious in the 
case of the potential vortex-source flow. 

4.2. Stability of the vortex-source flow 
In  this case U = U,, U' = U" = 0, V = V,, and (22a) becomes 

c+ V, 6 + (k2 -kUo) c = 0, (23) 
and is decoupled from (22b). Therefore, one may study separately the potential 
disturbances, 

C E O ;  @=Bmsin(mq5-q5,). 

Then, it follows from (22b) that 

Al(m) = -m; A2(m) = m. 

This result does not depend on the U,, V, values. For physical reasons the 
eigenvalues A, and their eigenmodes are irrelevant for the outer problem r > r,. 
Indeed, they suggest a growth of disturbances with r +  co, independent of the base 
flow strength. Now, one may study vortex disturbances of the form 

5 = D, sin (m$-q5,). 
It follows from (23) that 

A, = 2 + i ~ , - ( $ q + m 2 + i m ~ , ) t ,  

A, = 2 + ~ ~ , + ( $ ~ 2 , + m 2 + i m ~ , ) t .  

In particular, when U, is negative, but IU,l 4 1, 

A, = 2 - ~ U 0 ~ - ( m 2 + i m V 0 ) ~ U 0 ~ - 1 + O ( ( U 0 ~ - 2 ) ,  
A, = 2 +  (m2+imVo)~U,~-1+O(~U,~-2) .  

It seems that a sink flow with a large enough flow rate should be stable because the 
convergent flow prevents the propagation of disturbances from r = r ,  to  infinity. 
Therefore we identify eigenvalues A,(m) and their modes as irrelevant, because the 
real part of A, increases without bound as m increases. It is sufficient to use only 
modes corresponding to Al(m) and A, (m) for the formation of arbitrary distributions 
of velocities v,,v+, or stream function and vorticity fields (at  some r ) ,  using the 
Fourier decomposition 

m 

~1 = C [ B , r - m + ( A 2 - m 2 ) r A D , ] s i n ( m ~ - ~ , ) ,  

where h = A,(m). The constants B, andD, are to  be determined for the flow specified 
at r = r,. The term with m = 0 is absent because we consider disturbances having 
zero flow rate. As Al(m) = -m does not depend on parameter values, it is sufficient 
to examine only h to  study stability. We saw that A, < 0 for U,  < -1 .  Instability 
appears when A, passes through zero as U, increases. In  the neutral case h is purely 
imaginary; say, A = -imp, where /3 is real. Then we produce the known dispersion 
relations (8)-(10). Note that A, < 2 at all bounded values of U, and V,, as is evident 
from (24). This means that vorticity w ,  being proportional to r-,51, (and a, - 
exp ( A t )  - r"r), does not increase as r +  00, contrary to the behaviour of the stream 
function 4 1 / ,  (which is - ar). 

m-1 
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If V, is fixed and U, is increased starting from a negative value, so that the sink 
becomes weaker, the exponents h subsequently change the sign of their real parts at 
the neutral curves (10). Note that swirl is a stabilizing factor in that instability starts 
a t  a higher U,, as V, is increased (figure 4 ) .  The first change occurs for m = 1.  With 
Uo+ 00, we get from (24) that 

h = 2 - (m2 + im&)/U,, + O( U;')). 

The number of harmonics whose amplitudes increase as r + 00 becomes larger 
when U, grows. To predict the type of flow that develops for r b r,, nonlinear theory 
must be used. It is possible that the flow tends to a non-uniform self-similar solution. 
To check this possibility we need to study the spatial stability of these solutions 
(discussed next). 

4.3. Stability of the secondary Jlows in free space 
Typically, the development of disturbances of non-uniform solutions must be studied 
numerically ; but our analytical approach may be successful near bifurcation points. 
We have found that the vortex source is stable to infinitesimal steady disturbances 
when U,, V, correspond to  the region to the left of curve m = 1 in figure 4.  We also 
know that the bifurcations of the secondary solutions are subcritical with respect to 
U,. The general theory states that in such a case the secondary solutions are unstable 
in the vicinity of a bifurcation point, if non-degenerate. The following analysis 
confirms this but provides some new information on the values of A,, on neutral 
disturbances and on resonance cases. To avoid bulky calculations we shall focus on 
the relatively simple case V, = 0 (figure 5 ) .  Owing to  continuation arguments the 
main results would be the same in weakly swirling flows. 

Thus we use (22) with V =  0 and from $3.2, we get 

U = U, +Au, +A2u2 + . . . = U,, + A  cos (m$) +A2(u2 - i /(  12 m2))  + . . . 
[1+2cos(m$)-2cos(2m$)]+O(A3) ,  U = -  +Acos(m~)--  

m2-4 A2 
2 12 m2 

or 

and solutions are constructed with the help of the expansions, 

5 = 50+A51+A2g2+ ... ; @ = @,+A@,+A2@,+ ... ; k = k,+Akl+A2k2+ ... . 
At the zeroth order of A ,  

The requirement of periodicity of co yields 

5: + [ ki - ik,, ( m2 - 4) ]  5, = 0. 

k:-+k,(m2-4) = n2, n = 1,2,  ... . 
Thence, k, = 3 m 2 - 4 - [ ( m 2 - 4 ) 2 +  16n2]i); 

From ( 2 2 ) ,  

c o  = cos (n$ -$o). 

(h2-n2)@, = cos(nq5-q5,). 

The minus sign before the radical in the expression for k, is chosen for the same 
reason as in $4.2. For the particular case, when n = 1, m = 2 (note that this is the 
subharmonic resonance case), we get k, = - 1 and A = 1. Hence the last equation has 
no solution, and an alternative approach is needed. But in non-resonance cases, 
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If m > 1, the solutions are not stable because a set of eigenvalues for the non- 
uniform solution is close to the one for the uniform flow at A + 1, and the uniform 
solution is unstable. Therefore, resonance takes place in the region of instability of 
both the base and the secondary solutions. To check the instability of the secondary 
solutions in the subcritical vicinity of the main neutral curve, we have to study only 
the case m = 1, n = 1.  For these parameter values, using the decomposition for 5 
above, (22) and the solvability conditions, we get 

k, = -2, A, = 0, 

k,  = A, = 0, 

5, = COS($-+,), Go = -cos($-$~); 

GI = - Q C O S ( ~ + - $ , ) .  5, = % c o s ( ~ # - + ~ ) ,  

From solvability conditions for the second-order equations, 

k,cos$, = 0;  ($k,-$)sin$, = 0. 

There are two possibilities : 

Case ( a ) :  $, = 0 ;  k ,  = 0. 
In  this case all k, = 0;  i = 1,2, ... . The disturbance is neutral ( A  = 0) and denotes 

a turn in the velocity field around the origin. It has already become evident that the 
secondary solutions permit such a transformation. 

Case ( b ) :  $o =in; k ,  = 2/15; A = 2/15A2+0(A4). 
This disturbance is amplifying, and therefore, in accordance with the general 

theory, the secondary regime is unstable. Our numerical calculations have shown 
that the secondary regime with m = 1 remains unstable also a t  large amplitudes. 
Thus, only the uniform sink flow for Re < -37c is found to be stable to the 
perturbations considered. In  any source flow, disturbances grow downstream and the 
flow cannot tend to one of the secondary solutions as r + co . This result together with 
the general theory suggests that all secondary swirling flows are also unstable. They 
possess similar neutral disturbances corresponding to a turn around the origin. For 
continuation reasons the subharmonic resonance happens in the swirling case also. 
This resonance is meaningful in a study of nonlinear development of disturbances in 
the supercritical region. Although the secondary solutions are unstable, transition 
trajectories connecting them with the base solution may be stable in the subcritical 
region and are of physical interest. For approximate studies of such trajectories, we 
need eigenvalues for the primary and secondary solutions. In  the next section we 
calculate such eigenvalues for the JH problem. 

4.4. Spatial stability of the JH j b w  

This topic has been studied in prior papers in some detail (see Banks et al. 1988), but 
we need some additional information before we can study the reattachment 
phenomenon (discussed later). Furthermore, we shall see that in contrast to the 
vortex-source case, here the relevant and irrelevant modes mix in an unstable region 
where their eigenvalues become complex. In our calculations we use the following 
numerical algorithm. The system (22) with V = 0 is integrated from # = 0 to $ = a 
using the initial conditions, 

@ ( O )  = W(0)  = 0 ;  g(0) = 1 ; y'(0) = B. 

The first two are no-slip conditions, the third is a normalization condition and B 
is a number to be chosen to satisfy @'(a) = 0. As the problem is linear, the value of 
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FIQURE 13. (a) Eigenvalues for the J H  flow a t  a = 10'. Curves 1R and 11 correspond to real and 
imaginary parts of A ; the other curves correspond to real A. The main relevant (1 ,2)  and irrelevant 
(1') eigenvalues of solutions 0 (Re < Re,) and OZO (Re > Re,), and the main eigenvalue of solution 
I0 (3) are shown. ( b )  A schematic of an enlarged region near Re, and Re,,,. 

B is unique and is found with the help of the shooting method. Then we examine @(a) 
as a function of A and look for zeros of this function. In  all our calculations, we have 
used the fourth-order Runge-Kutta integration procedure and a fixed non-uniform 
(Chebyshev) grid with 100 intervals. The results have been checked against 
analytical solutions and numerical results of other authors in a few cases. 

Calculated results for a divergent channel with a = 10" are shown in figure 13 (a ) .  
The solid curves correspond to A, values for the everywhere-divergent solution 0 a t  
Re < Re, and for solution IOI a t  Re > R e ,  (figure 1). The critical value Re = R e ,  = 
108, a t  which h (l), being real, changes its sign, corresponds to the point B, in figure 
1. In  accordance with prior results (e.g. Banks et al.) and for physical reasons, we 
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FIGURE 14. Eigenfunctions of neutral disturbances of symmetric and antisymmetric modes 1 
and 2 (for points B, and M, in figure 1). 

suppose that a t  Re = 0 the solution 0 is stable, and we identify relevant (A,  < 0) and 
irrelevant (A,  > 0) modes. In figure 13 relevant modes pertain to curves 1 and 2, and 
one of the irrelevant modes is denoted by curve 1'. At Re = Re,,, which is slightly 
larger than Re,, the eigenvalues corresponding to curves 1 and 1' merge, and the 
complex-conjugate pair appears with real and imaginary parts corresponding to 
curves 1R and 11 (dot-dashed). This is elucidated with an expanded sketch in figure 
13(b). We see that the relevant and irrelevant modes become mixed after the 
merging. The second mode (curve 2), belonging to solution 0 for Re <Re,  and to 
solution IOI for Re >Re,,  turns to zero at  Re = 124 which corresponds to the 
bifurcation point M, in figure 1.  The dashed curve 3 in figure 13 (a)  denotes the main 
eigenvalues of solution I0 (or O I ) .  This mode is considered to be relevant for 
continuation reasons. Solutions 0 and I 0  coincide at Re =Re,,  as do their 
eigenvalues. As one moves along curve 0 to point B, and then along I0 in figure 1,  
one also moves from curve 1 to curve 3 in figure 13. 

The mode represented by curve 3 in figure 13 will be used in the analysis of the 
reattachment phenomenon given below. Eigenfunctions @($), related to curves 1 and 
2 in figure 13, are shown in figure 14 for the parameter values corresponding to points 
B, and M, in figure 1. 

The appearance of the complex-valued A in the supercritical range of Re together 
with instability of all the JH solutions suggests the existence of solutions which are 
either periodic or chaotic with respect to 6 = In (r/r, ,) .  The search for such solutions 
is rather difficult and requires a separate study. 

4.5. Spatial stability of time-dependent disturbances 
Analysis of time-dependent disturbances is rather complicated for the JH solutions 
and the secondary regimes in free space, because coefficients of equations for the 
disturbances depend on both r and 9. But in the case of the vortex-source flow, the 
base velocity field depends only on T ,  a fact that allows us to reduce the linear 
stability problem to an ordinary differential equation. here we consider the stability 
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of the source flow. Starting from equations (1) with v, = v Uo/r ,  v+ = 0 for the base 
flow, we obtain the linearized equation for disturbance vorticity 

Because the base flow is potential, here we use w for disturbance vorticity; 7 = 
vt/r& and r is normalized by r,. Then disturbances may be sought in the normal form 
w =f( r )exp(y~+im+) ,  and f ( r )  must satisfy the equation 

r2-+r(  d2f 1 - U0)---  df (yr2 + m2)f = 0. 
dr2 dr  

The solutions of (25) are explicitly written in terms of Bessel functions. To select 
a ‘relevant ’ mode we use the condition that a t  y = 0 the solution must coincide with 

f = (y’ k = tU,-(aq+m2):, 
TO 

corresponding to the steady case studied in $4.2. 

This yields 

Here, H r )  is the Hankel function. Let, a t  r = 1, there is harmonic oscillating 
disturbances which propagate to the outer region. In  this case y = iK,  with real K 

being a frequency. Using the asymptotic expression for the Hankel function 
(Abramowitz & Stegun 1964, p. 364), we obtain 

f = r P H f )  (r( - 7):) ; p = +uo; q = (ag + m2$. 

f =  Crp-texp(-rr.rcaK)t+ ... ; K > 0. 

One may see that at non-zero frequency we have exponential decay of the 
disturbances a t  infinity. Therefore, the steady disturbances, corresponding to zero 
frequency, are the most dangerous. 

4.6. Behaviour of temporal disturbances near the bifurcation points 
Now we consider the following boundary-value problem of a flow in the region r ,  < 
r < rl. On the boundaries we formulate ‘soft ’ conditions which are satisfied for all the 
self-similar solutions considered. Namely, we suppose that 

ay asz 
ar ar 
- = 0;  - = 0 at r = ro and r = r l .  

Then we consider time-dependent disturbances which must satisfy the same 
boundary conditions. Using the variable 5 = In ( r / r o )  and the transformation w = r2f, 
we obtain from (25) 

d 2 W  dw 
(U, 4-4) -+ (4-m2 +2U0) w = ywexp (25) ; -- 

dt2 d5 

_ -  - 0 a t  5 =  0 and 5 =  t1 =In’, w(0) = 1. 
d5 YO 

dw r 

The last condition is a normalization which may be used without any loss of 
generality in this linear problem. It is obvious that at U, = U,, = i(m2-4), there is 
a ‘neutral’ solution y = 0, w = 1. 
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We should like to know if y(U,) becomes positive for U, > Uo*. For this we have 
to calculate the derivative dy/dU,. The eigenvalue y and the eigenfunction w of (26) 
have smooth dependence on U,, and we use the expansions 

u, = U0*+"; y =ql+"yz+ ... ; w = l + E W 1 +  ... . 
At the zeroth order we have an identity. A t  the first order, it follows from (26) that 

Integration yields 

Using the boundary conditions in (26) and eliminating the integration constant C we 
obtain 

Because U,, > - 1.5, y is proportional to E with a positive multiplier. This is true 

Therefore, the temporal instability happens together with the spatial instability, 
for arbitrary 6, and, in particular, for 6, + CO. 

and growing modes are monotonic in time near the neutral curves. 

5. Transition trajectories 
The stability analysis shows that all secondary solutions are unstable both in 

channel flows and the free-space problems. The base solutions are unstable a t  
supercritical Re values ; they are stable to infinitesimal steady disturbances for Re < 
Re,. But in this case, the base solutions are not global attractors because a countable 
set of other steady solutions exists. Here we shall study some transition trajectories 
which connect the spatially unstable secondary solutions to the base solutions. These 
seem to be stable and have interesting physical interpretations. 

5.1. Jet in the sink Jlow 

5.1.1 The Landau equation 
To study transition trajectories which are new steady solutions of the 

NavierStokes equation, we use the classical weakly nonlinear theory describing 
disturbance behaviour in the vicinity of a bifurcation point. We shall deal with the 
Landau equation (Landau 1944). Banks et al. (1988) derived and discussed the 
Landau equation for flow in divergent channels with walls which are planar or have 
small curvature, but here we apply this equation and its modifications to a number 
of specific flows. We start with the case which may be solved analytically, namely, 
the vicinity of the first bifurcation in the sink flow. It has been shown that a sink with 
a large enough flow rate is stable to small steady disturbances introduced at r = r,,. 
For m = 1 and V, = 0, it follows from (10) that U,, = - 1.5. A small parameter 8 is 
introduced: U, = U,, -2 = - 1.5-2, and a disturbance is sought with the help of 
the expansions, 

Q l ( A 5 )  = ~ ( r ) y , ( ~ ) + E 2 A l ( r ) 5 1 ( ~ ) +  e m . 9  

+l(At) = W r )  Q j o ( ~ ) + E 2 4 ( r )  @1($)+ ... 9 
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where 7 = e2f. Starting with (7a ,  b )  and retaining only terms of the order < s3, we 
reduce them to the simpler form 

Then using the expansions in these equations we obtain €3 = A,B, = A,, ... and 

f ,  = cos#; @, = -cos#; 
A ,  = A 2 ;  5, = gsin(24); Q1 = -&sin(2$); 

From the solvability condition, the coefficient of C O S ~  must be zero and we 
produce the Landau equation in the particular form 

with solution A = {12/[1+cexp(87/5)]}+, 
where c = 12/Ai- 1 ; A ,  = A(0) .  

We see that if A: < 12, then A + O  as 7+ co. But if A: > 12, then A becomes 
infinite at a finite 7 value. From the above solution for A ,  it follows that this critical 
value of 7 is gln (- l / c ) ,  but as A --f 00 the solution ceases to be valid. Thus, the steady 
solution A = d 1 2 ,  corresponding to the non-uniform solution of mode m = 1, 
belongs to the separatrix of the attraction region of the uniform sink solution. 

Using above, the velocity field for the transition trajectory is obtained as 
follows : 

U = U, + [12( U,, - U,)]; sin #{ 1 + c exp (87/5)}-:; 

8c 
V = - d l 2  (U,,-Uo)~exp(8q/5)[1+cexp(8q/5)]-~cos#; 

5 

where 

The azimuthal velocity is a compact function localized near some r value, and the 
radial velocity changes from the non-uniform distribution near r = ro to the uniform 
as r +  00. This transition solution depends on two parameters: r, and A,, which 
correspond to a shift along the 7-axis and the choice of an initial point on the curve 

5.1.2. ModiJied Landau equation 
The Landau equation, dA/dy = yA+SA3, will now be modified and used for 

obtaining approximate solutions in a quite wide Reynolds-number range. For 
transition trajectories, the following one-mode approximation will be used : 

7 = (U,, - U,) In (r/ro).  

4 7 ) .  

9 = 11rb+A(f)(9S--11rtI)> (27 ) 
where ~ , ,  is a stream function of the base solution, and 11rS is a stream function of the 
secondary solution. The amplitude A is normalized here by ( - y /6 ) ;  and has the 
limits 

limA(6) = 1; 
& - X  &*a2 

limA(6) = 0. 

The Landau equation then takes the normalized form 

dA/df = hA(1 - A 2 ) ,  
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FIQURE 15. Streamlines (top) and radial velocity distribution near the origin (bottom) for a jet 
in a sink flow. U, = -2.615, V, = 0, ,u = 1, A = -0.95. Stream-function values are indicated. 

where h < 0 is the decay rate of such a disturbance near the base solution $crb in a 
subcritical range of the Reynolds number. The equation has the fixed point A = 1 ,  
besides A = 0, and introducing B = l - A  and IBI 4 1 it follows that 

dB/dt = -2hB = pB. (29) 
As we shall see, the one-mode representation (27) is a satisfactory approximation 

for a quite wide range of the parameters. But the relation p = -2h is valid only in 
a very small neighbourhood of a bifurcation point. In  order to  obtain an improved 
approximation, we modify (28) to the form 

dA/dt = AA(1 - A  

6 = - 1 - h / ( 2 p ) .  

Now the values of h and p are considered to  be independent and must be found 
with the help of stability analysis of both the base and the secondary solutions. 
Equation (30) has the solution 

r / r ,  = C A ~ ’ ~  ( 1  -A2)(  1 + ~?Al )~ /p .  

The constant c is arbitrary, as is r,. 
The modified equation (30) may be deduced by the weakly nonlinear approach 

using the higher-order terms, but we preferred a different method because it provides 
the exact eigenvalues of the dominant modes for both the base and secondary 
solutions. These eigenvalues indicate that the exponents of the disturbances decay 
with increasing r .  

Let the initial distribution of velocity correspond to a point placed slightly below 
the curve 1 in figure 5 .  Then as r increases, the point drops to the axis AU = 0 (see 
arrow Tl in figure 5 ) .  This transition trajectory corresponds to the flow induced by 
a point-source jet placed together with a uniform sink a t  the origin. The streamlines 
for this flow are shown in the upper part of figure 15. Each solid curve corresponds 
to $ = const, and values of this constant are indicated. Along the dashed curve the 
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FIQURE 16. Dependence of outflow region angle on flow rate for the secondary regimes with 
m = 1,2,3 in sink flow. 

radial velocity is zero. The lengthscale of the picture, including the curve $ = 0, 
which is a bubble boundary, is arbitrary. This means that a trajectory Tl (figure 5) 
corresponds to a family of transition solutions with ro being its parameter. In  real 
flows the bubble size depends on the jet momentum. 

In the lower part of figure 15, the radial velocity distribution is shown for A = 1, 
i.e. for solution 1,  figure 5. There is an outflow in the sector < y and inflow in the 
remaining sector 1$1 > y. The half-angle y of the outflow region depends on the flow 
rate, as shown by curve 1 in figure 16. Curves 2 and 3 show y for solutions 2 and 3 
in figure 5. All the curves have the common asymptote (for Re --f - co) y = 4.063 1Rel-t 
as shown by asymptotic analysis in $3.2. 

5.1.3. Limitations of the weakly nonlinear approach 
It has been found that a t  supercritical Reynolds numbers, the steady spatial 

disturbances, given a t  some circle r = ro,  grow as r increases. The velocity field a t  
large r cannot tend to one of the secondary self-similar solutions because all of them 
are spatially unstable. The question remains open as to what flow pattern develops 
at large r as a result of this instability. We will try to study this problem using some 
further generalizations of the Landau equation. 

The simplest problem of spatial instability of the source flow will be considered. 
We start from the nonlinear equations for disturbances (7)  with V, = 0, and simplify 
them using two assumptions : (i) disturbances are small ; @, and 0, - 8, e % 1 and (ii) 
derivatives with respect to 6 = In ( r / r o )  are small and a/a6 - 8. As we know these 
assumptions are indeed valid in the neighbourhood of the bifurcation points. Then, 
using the same approach as in 55.1.1, we reduce (7)  to the system 

Here, only terms of order d c3 are retained. Other nonlinear terms, being O(e4), and 
the second derivatives with respect to  f ; ,  being O ( E ~ ) ,  are neglected. Note that all 
solutions of the initial system (7) which do not depend on 6 are also solutions of the 
reduced system (31). System (31) is valid for transition trajectories in the vicinities 
of the intersection points of curves 1,  2, 3 with the abscissa in figure 5. But here we 
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shall try to  use the system in a more expanded region with large disturbances. It is 
obvious that system (31)  is of parabolic type and allows an initial-value formulation 
with respect to 5. 

Calculations have been performed for a few supercritical values of U, > - 1.5 and 
for disturbances a t  r = ro in the form 

$,(q5,r0) = A,sinq5+A2sin(2q5) 

with some tentative values of amplitudes A ,  and A,. 
The results of the numerical calculations may be summarized as follows. With an 

increase in r the number of oscillations with respect to q5 decreases and the flow 
pattern consists of a single region of outflow (‘jet ’) and a rather uniform inflow in the 
remaining interval of 4. But at some value of 6 the solution becomes infinitely large. 
The singularity is not localized a t  some q5 but is quite uniform. 

It seems reasonable that the latter feature is a result of the weakly nonlinear 
approximation. The Landau equation (see §5.1.1), too, has similar features. Thus, 
this analysis shows a tendency of the solutions to consolidate into a one-jet structure, 
but fails to  be valid for large enough amplitudes. 

5.2. Boundary-layer approximation 
The limitations of the above approximation may be avoided if one takes into account 
other nonlinear terms of equations (7) ; in the weakly nonlinear approach, these terms 
are of O(e4). I n  this case we may relax the requirement of small amplitudes in the 
approximation and suppose that amplitudes may be arbitrarily large but that 
a /a t  < a/aq5. Such a conjecture is usually used in the so-called ‘multi-scale’ approach 
and in the boundary-layer approximation of the Navier-Stokes equation. I n  
numerical methods this approach is known as ‘ parabolization ’ of equations. I n  this 
case there is no reason to separate the base flow and disturbances, and we may start 
from equations ( 2 )  with a/aT = 0. Neglecting the secondary derivatives with respect 
to 6, we obtain, 

These equations, being of parabolic type, are not resolved with respect to  the 
derivatives aQ/at and a$/at; that  is, if L2 and $ are given at some 6 = C0, then their 
derivatives with respect to 6 cannot be calculated explicitly from (32) .  But this 
difficulty may be overcome if we use the following semi-implicit method of 
integration. 

We assume that at some 6 = 6, a distribution $ = $,(q5) is known. Then from (32b)  
we find SZ, and may also calculate aB,/a$ and a$o/aq5. Let us introduce z = a$/at 
and find from (32b)  that a2z/aq52 = aQ/aE. Further, ( 3 2 a )  may be rewritten in the 
form 

where 

(33)  

The next step is finding a periodic solution of (33)  with period 27~. We have found 
the solution using factorization methods for the boundary-value problem z(0) = 
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FIQURE 17. Computed streamlines for a perturbed source flow for U, = 2 calculated using the 
boundary-layer approximation. 

z(27c) = 0. The zero value may be chosen without loss of generality because the circul- 
ation of the disturbances is zero. Finally, we find $, a t  the next position El = to + A t  
with the help of the relation $, = $,,+zAE, and perform an iteration procedure. 

At r = ro we have used the same initial condition as in the previous section: 

$ = Uoq5+A,sinq5+A,sin(2q5). 

The results of calculations a t  small velocities are similar to the results of 85.1.3. If 
even A ,  % A ,  (i.e. ‘ two-jet ’ perturbation), then with an increase in r the number of 
oscillations in the distribution of +($) decreases and the flow tends to the one-jet 
pattern. Thus, the ‘consolidation ’ effect is observed in both the approaches. But 
now, instead of the limitation in 55.1.3, we have another limitation. 

When the minimum value of the radial velocity U = a$/aq5 becomes less than -4, 
the coefficient of aQ/aE in (32a) goes to  zero a t  some values of q5. Though these values 
may lie between grid points, this leads to a fast numerical instability and destruction 
of solutions due to high-frequency oscillation with respect to q5 (equation (33)). 
Therefore, the boundary-layer approach obviously ceases to be valid for Umin c - 4, 

An example of calculations using the boundary-layer approach and parameter 
values U, = 2, A ,  = A ,  = 0.1 is shown in figure 17. We see that quasi-uniform flow 
at r = ro traqsforms into a thin jet a t  large r .  Fluid flowing out from the source is 
contained in a ‘bottle’-like region, outside of which we have a jet-like flow. 

Thus, we see that a t  the first stage of flow development with increasing r ,  both the 
weakly nonlinear and boundary-layer approximations show a tendency towards flow 
consolidation. I n  the supercritical range (Re > Re,) both approaches fail to be valid 
at large enough r and the full Navier-Stokes equation must be used. Now we return 
to the weakly nonlinear approximation to describe a number of transition trajectories 
in the subcritical range (Re c Re,). 

5.3. Tripolar jet 
Here we consider a jet which flows out into an ambient fluid a t  rest. Such an example 
gives transition trajectory T3 in figure 5 (with Uo = 0) from the three-jet solution to 
the no-flow case. The initial solution, corresponding to a vicinity of the intersection 
point P on curve 3, is a flow containing three outflow regions and three inflow regions 
with maximum velocity U,,, = U(0)  = 22.23 and minimum velocity U($) = - 12.44. 
The velocity profile in the interval -in < q5 < 0 is shown in the lower part of figure 
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i 
FIGURE 18. Streamlines (top) and velocity profile near the origin (bottom) for the tripolar 

in free space for zero flow rate (i.e. U, = 0 ) .  Stream-function values are indicated. 
jet 

18. The rays q5 = $kn, k = 1, . . . , 6  are symmetry axes. The half-angle of the outflow 
region y = 24.5'. This solution (corresponding to P in figure 5 )  is unstable and the 
increment p (equation (30)) of the growing mode m = 3 is 0.5456. For the uniform 
solution the decay rate A = A, is obtained from (24). In  this case U, = V, = 0, 
m = 3 ,  and therefore A = - 1. These provide us all the coefficients needed in equation 
(30) to calculate amplitude A(6).  

A few streamlines for the transition solution approximations (27) and (30) are 
shown in the upper part of figure 18. There is no bubble here (unlike, for example, 
in figure 15) and ?# is zero only along rays q5 = ikn, k = 1, . , . ,6 .  The function U(q5, r )  
tends to zero as r increases and is asymptotically proportional to l / r  for r / ro  B 1.  
Based on the results we can infer that there are three intermediate asymptotic regions 
for the tripolar jet of a high momentum and zero flow rate, namely, ( a )  the 
Schlichting region where the maximum velocity urn decays in proportion to  r-i, ( b )  the 
JH region where vm is proportional to l /r ,  and ( c )  the outer region where v, is 
proportional to I / r 2 .  

Flow patterns similar to that shown in figure 18 have been observed in Marangoni 
convection (Pshenichnikov & Yatsenko 1974). At large Schmidt numbers the flow is 
concentrated in a thin near-surface layer and may be considered quasi-two- 
dimensional. When the intensity of motion increases, the number of vortices, i.e. m 
value, also increases, as in our case. 
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FIGURE 19. Attachment of flow in the diffuser at Re = 100 (transition trajectory from 10 to 0 
regimes in figure 1 ) .  Initial (curve l ) ,  and final (curve 2) velocity distributions and boundary of the 
recirculation region (curve 3) are shown. 

5.4. Attachment $ow in the divergent channel 
Here we consider the transition trajectory in the J H  problem from solution I0 to 
solution 0 a t  a subcritical Re close to  Re.,, (near, but below, point B, in figure 1). This 
case is simpler because we can use the weakly nonlinear theory for this study. Note 
that this transition implies a reattachment phenomenon as inflow disappears in the 
transition I 0  to 0. 

Let r, be the position of reattachment ; for r 4 r,, we consider the asymmetric self- 
similar solution of mode m = 1 with the stream function $a (curve 1 in figure 19) 
which also contains a small disturbance B($s-$a); here $s(O(l)) is the stream 
function of the stable symmetric solution (curve 2 in figure 19) and 0 < B < 1.  We 
look for the dependence of B on the distance r .  We expect that B + 0 as r -+ 0 and 
B+ 1 as r +  co, and 

$(r,  $) = $a($) +B(r)[$s($)-$a($)I. 
Following the procedure of $5.1.1, the Landau equation can be deduced as 

dB/dt = ,uB( 1 -B2). 

Its solution B = 0 corresponds to the asymmetric self-similar solution IO, and 
B = 1 corresponds to  the symmetric solution 0; the disturbance growth rate ,u > 0 
because of the instability of the asymmetric solution. The dependence ,u(Re) is shown 
by curve 3 in figure 13. Comparing this curve with curve 1 (for A )  one can see that 
h x -2p for the range 100 < R e  < Re.,,. Integrating the above equation, we have, 

B = [l +cexp ( -2p5) I - i ;  c = l/[l/Bi- 11; B, = B(O), 

where 6 = O(r = r,) is the position of reattachment. The form of B(r)  is shown in 
figure 20. The curve separating the regions of divergent flow and the recirculation 
zone is found from the relation 

$a($) +B(r)  [@s($)-$a(#)l = 0. 
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r / ro  
FIQURE 20. Dependence of the amplitude in the Landau equation on distance from the 

attachment point r = r,,; Re = 100; a = 10". 
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FIQURE 21. Bifurcation diagram at a = II, m = 1 .  Transition trajectory (T) from regime IOZ to 
the rest case (i.e. Re = 0). Parameters of point 1 are: U,, = 11.37, ZJ,,,,, = -5.34, y = 31.6', 
p = 0.4756. 

This curve approaches the bottom wall at  some finite angle (see curve 3 in figure 
19). The angle of reattachment correspondingly decreases and approaches zero as 
Re+Re,. Our numerical calculations indicate that near Re = Re,, the angle is 
proportional to Re-Re,. In  figure 19 the angle is near 1' (it appears larger owing to 
the use of the logarithmic scale for r ) .  The attachment takes place only if B > 0. If 
an initial disturbance is of the opposite sign, then the everywhere-divergent flow will 
not be established, as is the case with other unstable JH solutions. The fate of the 
transition solution as r +  co is unknown, but some non-self-similar flow has to 
develop. 

5.5. Jet emerging from a slit in a wall 
When in the JH problem the angle between the planes is x ,  the flow becomes a plane 
jet emerging from an infinitesimal thin slit in a plane wall. The dependence of Re on 
U,,, for the JH solutions with m = 1 (which means that there is only one region of 
outflow) is shown in figure 21. Letters denote the same flow patterns as in figure 1. 
The solid curve relates to stable solutions, the dashed curves denote unstable 
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FIGURE 22. Streamlines (top) and velocity profiles (bottom) for a jet emerging from a slit in a plane 
wall (trajectory T in figure 21). Velocity profiles are shown for both near origin (solid line) and far 
region (dashed line). Insert shows a schematic of a physical realization of a jet with zero flow rate. 

solutions with one growing disturbance mode, and the double-dashed curves 
represent unstable solutions with two growing disturbance modes. One of these 
modes breaks the symmetry, another retains the symmetry but causes a transition 
to the asymmetric solution with the smallest maximum velocity Urnax. 

Now we consider such a transition for a total flow rate of zero, as this corresponds 
to strong jets when momentum flux is the unique characteristic of the flow (see $1). 
This flow may be realized experimentally with the help of two thin counter-rotating 
cylinders placed near a wall (see the schematic in the insert in figure 22). The rotation 
direction must produce an outflow near the symmetry plane and inflows near the 
wall. The JH solution for such a flow pattern for Re = 0 corresponds to point 1 in 
figure 21. The velocity profile is shown in the lower part of figure 22. 

To approximate the transition solution T (see figure 21) we will use (27) and (30). 
We must determine h and so must study the stability characteristics of the state of 
rest following Dean & Montagnon (1949). Looking for symmetric small disturbances 
of the normal form, we find 

y? = exp ( A t )  {C, sin [ ( A  - 2)$] + C, sin (A$)} .  (34) 
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rv,m,./v - 
FIGURE 23. Bifurcation diagram at a = 2 x ;  m = 1,2,3. Parameters for the starting point of 
transition trajectory T (from OIOZO to 0, the rest case) are: U,,, = 17.24, Urn," = 10.96, 
y = 26.9', p = 0.4836. 

From the conditions $(in) = ~,V(in) = 2 we have 

(C, - C,) sin ($An) = 0;  {AC, - ( A  - 2)CJ cos ($An) = 0, 

and using the normalization f(0) = 1 we obtain 

A = -1, - 3 , . . . ;  c, = c, = 1/(2A-2); 

A = -2, -4, ...; c, = 1/[2(h-2)]; c, = 1/(2A). 

The minimum decay corresponds to A = - 1 and 

$ = +[sin # +sin (3#)] ; $' = U = ~[COS # + 3 cos (3#)]. 

This velocity distribution is shown by dashed curve E in figure 22. It is apparent that 
the profile does not vary significantly along the transition trajectory T (from IOI 
near the origin to the rest state a t  r + co) in figure 21. Streamlines calculated with the 
help of (27) and (30) are shown in the upper part of figure 22. The intermediate 
asymptotes in this case are the same as for the tripolar jet. 

Thus, employing quite a simple analysis, we have obtained a complete solution for 
the jet flow. It follows from A = - 1 and (34) that the stream function is proportional 
to r-'. Physically the result obtained means that owing to interaction with the wall, 
the jet decays more rapidly. Near the slit the velocity decays as r-l but in the far field 
as r+. 

5.6. Jet emerging from a thin plane channel 
One more physically interesting case is when the angle between the walls is 27c. Both 
walls are placed a t  # = 7c and constitute a plane channel with an infinitesimal gap 
through which a jet emerges. This is equivalent to two counter-rotating needles near 
the edge of a thin plate (shown schematically as the insert in figure 24). The difference 
between this flow and the tripolar jet in free space is that now the no-slip condition 
must be satisfied a t  # = f 7 c .  Re (Urnax) for the JH  solutions of modes m = 1,2,3 is 
shown in figure 23. Again, we shall consider the transition solution with zero flow 
rate. The first J H  solution corresponding to outflow near the axis (4 = 0) has a flow 
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FIGURE 24. Streamlines (top) and velocity profile (bottom) for a jet emerging from a plane 
channel (trajectory T in figure 23). Insert shows a schematic of a physical realization. 

pattern OIOIO. The velocity distribution is shown in the lower part of figure 24. To 
find A, we have to use (34) and the conditions $(n) = f ( n )  = 0, which yield 

(C,+C,)sin(hn) = O ;  [ (hC2+(h-2)C, ]cos(hn)  = O .  

The normalization condition $'(O) = 1 gives hC, + ( A  - 2)C, = 1 ; therefore h = -+, 
-%, .. . ; C, = C, = i. The least-decaying disturbance corresponds to h = -8 and 

$ = +[sin (#) -sin (;#)I ; U = f[5 cos (9) - cos (+$)I. 
A streamline pattern, produced with the help of (27) and (30), is shown in the upper 

part of figure 24. Such a flow structure, including four vortex cells, may be 
interpreted as follows. The main jet propagating along the axis $ = 0 entrains 
ambient fluid and hence induces a transverse convergent flow in the outer region. A 
part of this convergent flow is reflected by the wall and generates two reverse near- 
wall jets. A self-similar solution for the near-wall jet in the boundary-layer 
approximation has been reported by Akatnov (1953) and Glauert (1956) ; see also 
Loitsyansky (1966). The maximum velocity, V,,, (figure 24), of this jet is proportional 
to r-i. Thus, there are three asymptotic zones. In the outer region, velocity decays 
as r-i in all directions ; in the intermediate JH region velocity decays in all directions 
as l / r ;  but in the inner region where boundary layers are present, the maximum 
velocity of the forward (Schlichting) jet is proportional to r-i and the maximum 
velocity of the induced near-wall Akatnov-Glauert jet is proportional to r-i. Both jets 
are of the same order in the JH region but as r+O the Schlichting jet obviously 
predominates. 
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6. Discussion 
6.1. What results from instability ? 

We have found a countable set of steady flow plane solutions of the NavierStokes 
equation which bifurcate from the potential vortex-source flow. Next we studied 
their linear and nonlinear instabilities in the region r > ro. The base solution is 
unstable at the flow rate and circulation values corresponding to the right-hand side 
of the curve m = 1 in figure 4. All the secondary solutions are unstable as well. This 
situation is similar to the JH problem whose stability features have been studied and 
discussed by Banks et al. (1988) and re-examined here for some specific values of the 
angle. 

A mechanism for such a spatial instability seems to be rather simple. If we consider 
an inviscid fluid, then the instability may be explained with the help of the Bernoulli 
integral. If, along a radial line, velocity becomes larger than that in the ambient 
fluid, then pressure decreases along that line. As a result there is flow towards the 
low-pressure points and the velocity difference increases between this and other 
locations. This leads to the formation of a jet. Viscous diffusion and dissipation are 
stabilizing factors. This is why in the divergent channel the instability appears only 
if the Reynolds number exceeds some critical value. But for a large enough angle of 
the channel or for a source in free space, the instability develops a t  arbitrarily small 
Reynolds numbers. 

One may think that this paradoxical effect (i.e. instability a t  Re = 0) occurs 
because of the singularity in the origin; this is not so. If a purely divergent velocity 
distribution is assumed at r = ro and we study the flow in the region r > To,  then 
disturbances also increase downstream a t  arbitrarily small Re. 

Here we consider the simplest stability problem formulation. But other approaches 
are possible also. For example, one may fix a velocity field at all boundaries, 
including a t  inflow and a t  infinity, introduce initial disturbances only a t  inner points 
of the region and then study the time evolution of the disturbances. In  this case, as 
we have studied by numerical calculations for the free-space problem, the uniform 
flow (of both the source and sink) with velocity distribution fixed at r = ro is stable 
a t  all Re. In contrast, as we have shown here, infinitesimal steady disturbances at 
r = ro in a uniform source flow leads to the destruction downstream of the uniformity 
of the flow (say, by formation of jets) even when the flow rate is arbitrarily small. 
Such an instability is sometimes interpreted as the breakdown of St Venant’s 
principle (see Moffatt & Duffy 1980 and Banks et al. 1988 for the JH problem). 

To summarize, the question remains open as to what flow pattern develops a t  
Re > Re, or at Re <Re,  for large initial disturbances. 

6.2. Possible applications 

It is useful to discuss possible applications of the new solutions reported in this paper 
to real flows. Although our discussion here is speculative, we hope that it will serve 
as a motivation for further investigations. 

6.2.1. Vortex dynamics 
Steady solutions bifurcating from a potential vortex may serve as simple static 

models of ‘elementary’ events in vortex dynamics. The first example is a single 
vortex generated by the free-shear-layer instability. Its core seems to be similar to 
the core of asymmetric vortices with m = 1 and a high enough circulation (see, for 
instance, figure 9d).  There are streamlines which swirl inward, turn and then swirl 
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FIGURE 25. Spiral branch pattern of the nonuniform vortex-sink flow with m = 2. Outflow 
regions are darkened. 

outward, so that the kinematics in our steady solution and in a free-shear-layer 
vortex is qualitatively same. The second example is pairing of vorticity patches. This 
may be modelled by the asymmetric vortices with m = 2 (see figure 10e)  using a 
quasi-steady approach. Similar interactions and merging of m vortices may be 
modelled. The third example is vortex filamentation. Deem & Zabusky (1978) found 
that a vortex patch having an egg-like pattern in an inviscid fluid generates in time 
a vortex filament developing from the patch’s edge and having a spiral form. If one 
takes a steady solution, like that shown in figure 9 ( a ) ,  as the initial distribution and 
removes the singularity a t  the origin (say, stop the rotation of a rod that drives the 
singularity), then a vortex patch with a spiral tail develops. Note that in our case of 
viscous fluid there are regions of oppose-signed vorticity that relate to the jet-like 
character of the flow. 

6.2.2. Spiral galaxy 
Considering a very crude idealization of a spiral galaxy we suppose that all its 

matter, contained in a plane, moves owing to self-gravitation and an initial angular 
momentum. For a viscous incompressible fluid the gravity force, being potential, 
may be included in the pressure gradient, and then the problem is reduced to a purely 
kinematic one. The simplest model is the vortex-sink flow. Even in such an extremely 
simplified pure kinematic model that is a mechanism of instability of the initially 
angle-uniform flow which leads to the generation of spiral branches (figure 25). 

6.2.3. Vortex-ring instability 
Vortex rings are typical elements of flow in round submerged jets in their near and 

far fields. Jet-like flows are also rich in instability phenomena including azimuthal 
symmetry breaking and reorganization (Hussain & Husain 1989). Vortex ring 
instability has been studied experimentally and theoretically by Widnall & Sullivan 
(1972). They have used inviscid flow to explain the instability in terms of the value 
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FIGURE 26. Visualization of vortex ring instability by Widnall & Sullivan (1972). 

of azimuthal number m, which is related to the size of the vortex ring core. The 
visualized vortex ring (see figure 26) does not seem to be extremely thin, and the 
effect of viscosity may be significant. We shall now try to interpret this instability 
in terms of our results. When a fluid particle moves along a streamline in a vortex 
ring, its radial velocity oscillates with zero mean value. If we approximate the flow 
locally by the self-similar radial solutions (assuming the flows is quasi-steady), then 
a point in figure 5 associated with a fluid particle would oscillate near U, = 0 on the 
abscissa. The number m of amplifying (unstable) modes depend on the oscillation 
amplitude which relates to the maximum circulation in the vortex ring. According 
to our results, the maximum value of m is asymptotically proportional to the square 
root of Re (i.e. the circulation); this seems to agree with the experimental data of 
Widnall & Sullivan. We are surprised by this agreement as our model is crude. 

6.2.4. Near-wall eddies in plane jets 
Results of 5s5.5 and 5.6 may be used as models of near-exit eddies which are 

observed in plane or elliptic jets (Hussain & Husain 1989). Our results are related to 
the far fields of these eddies. To predict the position of an eddy centre one has to 
combine our solution with the Schlichting boundary-layer jet solution using the 
method of matched asymptotic expansions, as has been done by Schneider, Zauner 
& Bohm (1987) for an axisymmetric jet issuing from a wall. This requires both 
theoretical and experimental efforts. 

6.3. Limitations of the results 
We have examined a number of exact solution of the NavierStokes equation, but 
all of them have self-similar features and include a singularity a t  the origin. When 
one tries to apply these results to real flows, some difficulties will be encountered. 
First, do real flows have a region where the self-similar solution may serve as a valid 
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approximation ‘1 A real diffuser has an entrance at r = Tin and an exit a t  r = rout, and 
the rout/rin ratio may not be sufficient for the use of the self-similar approach for an 
approximation of even the base flow. Second, we have studied some bifurcations of 
the self-similar solutions. If one considers some boundary conditions which are 
different from the conditions used here, will the bifurcations disappear ‘1 Third, we 
have studied only steady solutions and their stability with respect to  two- 
dimensional disturbances. Other instabilities, relating to three-dimensional dis- 
turbances or different kinds of time-dependent disturbances may occur a t  smaller 
parameter values. Prior results of the JH problem have shown that a t  very small 
angles, the Tollmein-Schlichting instability is more dangerous (e.g. Banks et al. 
1988). I n  spite of these limitations, the new solutions and the bifurcation and 
instabilities discussed here may serve as useful simple models. Because of their 
simplicity, their advantage is that  they can be studied by analytical methods. 

7. Summary of new results 
In  conclusion, we list the new results reported in this work. 
It has been found analytically that a countable infinite set of bifurcations occurs 

in the potential vortex-source flow of a viscous incompressible fluid. As a result, new 
steady solutions of the NavierStokes equations appear. 

Weakly nonlinear analysis has shown that all these bifurcations are subcritical 
with respect to a flow rate increase, similar to  the bifurcation in the Jeffery-Hamel 
problem. 

Features of the new solutions have been studied, including asymptotic ones a t  
large Reynolds numbers. I n  particular, asymmetric vortices, being angle-dependent 
generalizations of the potential vortex, have asymptotically an interesting flow 
structure with the Golden Mean as the ratio of outflow/inflow branch widths. 

Linear spatial stability with respect to steady disturbances in the region r > r,, has 
been studied for the primary and secondary solutions. The sink flow is stable only if 
the flow rate is larger than the critical value ; the source flow is unstable a t  any flow 
rate. It is found for the source flow that steady spatially developing disturbances are 
more dangerous than time-dependent ones. If the source flow becomes unstable 
spatially, it becomes unstable temporally too. The addition of a circulation a t  the 
origin leads to stabilization of the source flow. All the secondary solutions appear to 
be unstable in this formulation, similar to the JH problem. 

Linear stability of the JH flow in a divergent channel of angle a = 10” has been 
studied. It has been found that in the supercritical Reynolds-number range, the main 
eigenvalues become complex and coupled with a mode irrelevant for Re <Re, .  

A number of transition trajectories connecting the secondary unstable solutions 
with the stable base solution have been investigated in an approximate manner for 
both the free-space and channel cases. In  particular, a jet in a sink flow, a tripolar 
jet, the reattachment phenomenon in a divergent channel, a jet emerging from a slit 
in a wall and a jet emerging from a plane channel have been studied. 

Some scaling features have been found for the secondary solutions both in the free- 
space and channel cases. These scaling features allow us to  precisely ‘count’ the 
number of J H  solutions, depending on the dimensionless maximum velocity value. 
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